Multi-objective optimization based reverse strategy with differential evolution algorithm for constrained optimization problems
نویسندگان
چکیده
Solving constrained optimization problems (COPs) has been gathering attention from many researchers. In this paper, we defined the best fitness value among feasible solutions in current population as gbest. Then, we converted the original COPs to multi-objective optimization problems (MOPs) with one constraint. The constraint set the function value f(x) should be less than or equal to gbest; the objectives are the constraints in COPs. A reverse comparison strategy based on multi-objective dominance concept is proposed. Compared with usual strategies, the innovation strategy cuts off the worse solutions with smaller fitness value regardless of its constraints violation. Differential evolution (DE) algorithm is used as a solver to search for the global optimum. The method is called multi-objective optimization based reverse strategy with differential evolution algorithm (MRS-DE). The experimental results demonstrate that MRS-DE can achieve better performance on 22 classical benchmark functions compared with several state-of-the-art algorithms. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Optimization of the Prismatic Core Sandwich Panel under Buckling Load and Yield Stress Constraints using an Improved Constrained Differential Evolution Algorithm
In this study, weight optimization of the prismatic core sandwich panel under transverse and longitudinal loadings has been independently investigated. To solve the optimization problems corresponding to the mentioned loadings, a new Improved Constrained Differential Evolution (ICDE) algorithm based on the multi-objective constraint handling method is implemented. The constraints of the problem...
متن کاملConstrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملModified Pareto archived evolution strategy for the multi-skill project scheduling problem with generalized precedence relations
In this research, we study the multi-skill resource-constrained project scheduling problem, where there are generalized precedence relations between project activities. Workforces are able to perform one or several skills, and their efficiency improves by repeating their skills. For this problem, a mathematical formulation has been proposed that aims to optimize project completion time, reworki...
متن کاملPareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm
Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...
متن کاملOPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 42 شماره
صفحات -
تاریخ انتشار 2015